Abstract
The employment of readily obtainable parameters, including voltage and temperature, derived from the battery management system facilitates the real-time evaluation of lithium-ion batteries health status. However, the complex aging mechanisms and noise interference inherent in lithium-ion batteries present substantial challenges to accurate estimation. Hence, this research proposes a multi-model fusion approach utilizing Gramian Angular Field encoding to accurately predict the health status of lithium-ion batteries. Battery voltage and temperature data are acquired through system aging experiments. The Gramian Angular Field-based image encoding transforms these data into images, accentuating the subtle characteristics of the data and thereby enhancing its recognizability by neural networks. Subsequently, two-dimensional Convolutional Neural Networks are employed to extract features from the images, followed by one-dimensional Convolutional Neural Networks to reduce the dimensions of the feature matrix. The battery health status is then predicted utilizing Long Short-term Memory Networks. The culmination is the evaluation of the model performance through the application of quantitative error metrics. The study results show that the method can pinpoint the prediction error to within 2%, significantly improving accuracy over traditional prediction methods. It proves the great potential of direct data, such as voltage and temperature, in predicting battery health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.