Abstract

Thermal gradient is inevitable in a lithium-ion battery pack because of uneven heat generation and dissipation, which will affect battery aging. In this paper, an experimental platform for a battery cycle aging test is built that can simulate practical thermal gradient conditions. Experimental results indicate a high nonlinear degree of battery degradation. Considering the nonlinearity of Li-ion batteries aging, the extreme learning machine (ELM), which has good learning and fitting ability for highly nonlinear, highly nonstationary, and time-varying data, is adopted for prediction. A battery life prediction model based on the sparrow search algorithm (SSA) is proposed in this paper to optimize the random weights and bias of the ELM network and verified by experimental data. The results show that compared with traditional ELM and back-propagation neural networks, the prediction results of ELM optimized by SSA have lower mean absolute error percentages and root mean square errors, indicating that the SSA-ELM model has higher prediction accuracy and better stability and has obvious advantages in processing data with a high nonlinear degree.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call