Abstract

Mesoporous nanocrystalline TiO2 and TiO2–V2O5 microspheres were prepared by non-hydrolytic sol–gel from TiCl4, VOCl3, and iPr2O at 110 °C without any solvent or additives. The samples were characterized by elemental analysis, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, nitrogen physisorption, and impedance measurements. At low vanadium loadings, only TiO2 anatase was detected, and V2O5 scherbinaite was also detected at high vanadium loadings. The texture of the samples depended on the V loading, but all the samples appeared built of primary nanoparticles (≈10–20 nm in size) that aggregate to form mesoporous micron-sized spheres. The lithium insertion properties of these materials were evaluated by galvanostatic measurements taken using coin-type cells, in view of their application as electrode for rechargeable Li-ion batteries. The mesoporous TiO2 microspheres showed good performances, with a specific reversible capacity of 145 and 128 mAh g−1 at C/2 and C, respectively (C = 335.6 mA g−1), good coulombic efficiency, and a moderate capacity fade (6 %) from the 2nd to the 20th cycle at C/20. Although the addition of V effectively increased the electronic conductivity of the powders, the specific reversible capacity and cycling performances of the TiO2–V2O5 samples were only minimally improved for a 5 at% V loading and were lower at higher V loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.