Abstract

Mechanistic studies of the enolization of 2-methylcyclohexanone mediated by lithium hexamethyldisilazide (LiHMDS; TMS(2)NLi) solvated by hindered dialkyl ethers (ROR') are described. Rate studies using in situ IR spectroscopy show that enolizations in the presence of i-Pr(2)O, 2,2,5,5-tetramethyltetrahydrofuran, and cineole proceed via dimer-based transition structures [(TMS(2)NLi)(2)(ROR')(ketone)]. Comparing the relative solvation energies and the corresponding solvent-dependent activation energies shows that the highly substituted ethers accelerate the enolizations by sterically destabilizing the reactants and stabilizing the transition structures. Comparisons of hindered dialkyl ethers with their isostructural dialkylamines reveal that the considerably higher rates elicited by the amines derive from an analogous relative destabilization of the reactants and relative stabilization of the transition structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.