Abstract
Passive grain boundaries (GBs) are essential for polycrystalline solar cells to reach high efficiency. However, the GBs in Cu2ZnSn(S,Se)4 have less favorable defect chemistry compared to CuInGaSe2. Here, using scanning probe microscopy we show that lithium doping of Cu2ZnSn(S,Se)4 changes the polarity of the electric field at the GB such that minority carrier electrons are repelled from the GB. Solar cells with lithium-doping show improved performance and yield a new efficiency record of 11.8% for hydrazine-free solution-processed Cu2ZnSn(S,Se)4. We propose that lithium competes for copper vacancies (forming benign isoelectronic LiCu defects) decreasing the concentration of ZnCu donors and competes for zinc vacancies (forming a LiZn acceptor that is likely shallower than CuZn). Both phenomena may explain the order of magnitude increase in conductivity. Further, the effects of lithium doping reported here establish that extrinsic species are able to alter the nanoscale electric fields near the GBs in Cu2ZnSn(S,Se)4. This will be essential for this low-cost Earth abundant element semiconductor to achieve efficiencies that compete with CuInGaSe2 and CdTe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.