Abstract

We report a first-principles structure prediction of the LiBH(2), which structures are modeled by using four formula units per unit cell without symmetry restrictions. The computational methodology combines a simulated annealing approach and density functional total energy calculations for crystalline solid structures. The predicted lowest energy structure shows the formation of linear anionic chains, (∞)(1)[BH(2)], enthalpy of formation at 0 K equal to -90.07 kJ/mol. Ring structures, in particular with butterfly and planar square topologies, are found to be stable but well above the ground state by 20.26 and 12.92 kJ/mol, respectively. All convergent structures fall in the symmetry families monoclinic, tetragonal, and orthorhombic. For the representative structures of each family group, simulated X-ray diffraction patterns and infrared spectra are reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call