Abstract

In recent experimental studies based on NMR techniques, the ion dynamics in β-Li2TiO3 has been discussed controversially. In order to shed light on this discussion, Li ion diffusion processes in β-Li2TiO3 are investigated theoretically using periodic quantum–chemical DFT methods. It is observed that Li+ migrates along the ab plane as well as in the direction perpendicular to the LiTi2 layers with the activation energies ranging between 0.44 and 0.54 eV, suggesting a slow ion dynamics. In addition, the structural, electronic, and defect properties and the electric field gradient (EFG) parameters at Li positions of β-Li2TiO3 are calculated. According to our results, β-Li2TiO3 is a wide gap insulator with an indirect band gap at Γ–C. The calculated defect formation energy values as well as the EFG parameters show that there are three different Li sites in the structure, namely, Li(1), Li(2), and Li(3), which are in well accord with the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.