Abstract

Glycogen synthase kinase 3β (GSK3β) activity is regulated by phosphorylation processes and regulates in turn through phosphorylation several proteins, including eukaryotic initiation factor 2B (eIF2B). Serine 9 phosphorylation of GSK3β (pGSK3βSer9), usually promoted by activation of the PI3K/Akt survival pathway, triggers GSK3β inhibition. By contrast, tyrosine 216 phosphorylation of GSK3β (pGSK3βTyr216) increases under apoptotic conditions, leading to GSK3β activation. Lithium chloride (LiCl) is usually described to increase pGSK3βSer9 through the PI3K/Akt pathway, resulting in GSK3β inhibition. The purpose of this study is to demonstrate that in some cases LiCl is also able to increase pGSK3βTyr216, resulting in GSK3β activation. For this, we used SH-SY5Y cells and primary neuronal cultures and investigated the effects of LiCl on the two phosphorylated forms of GSK3β under staurosporine (STS)-intoxicated conditions. The ratios between the phosphorylated and total forms of GSK3β and eIF2B were determined by Western blotting. Our results revealed that, besides its ability to increase pGSK3βSer9, LiCl is also able to increase pGSK3βTyr216 greatly in STS-intoxicated SH-SY5Y cells but not in STS-intoxicated primary neuronal cultures. This accumulation of both Ser9 and Tyr216 phosphorylation results in GSK3β activation in STS-intoxicated SH-SY5Y cells in spite of the presence of LiCl. These findings indicate that LiCl treatment is not necessarily correlated with GSK3β inhibition even though it generates Ser9 phosphorylation. Consequently, the ratio pGSK3βSer9/pGSK3βTyr216, which takes into account the balance between the two inactive (Ser9) and active (Tyr216) forms of GSK3β, could be more useful for predicting GSK3β inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.