Abstract
The carbon-coated silicon monoxide (SiOx@C) has been considered as one of the most promising high-capacity anodes for the next-generation high-energy-density lithium-ion batteries (LIBs). However, the relatively low initial Coulombic efficiency (ICE) and the still existing huge volume expansion during repeated lithiation/delithiation cycling remain the greatest challenges to its practical application. Here, we developed a lithium and boron (Li/B) co-doping strategy to efficiently enhance the ICE and alleviate the volume expansion or pulverization of SiOx@C anodes. The in situ generated Li silicates (LixSiOy) by Li doping will reduce the active Li loss during the initial cycling and enhance the ICE of SiOx@C anodes. Meanwhile, B doping works to promote the Li+ diffusion and strengthen the internal bonding networks within SiOx@C, enhancing its resistance to cracking and pulverization during cycling. As a result, the enhanced ICE (83.28%), suppressed volume expansion, and greatly improved cycling (85.4% capacity retention after 200 cycles) and rate performance could be achieved for the Li/B co-doped SiOx@C (Li/B-SiOx@C) anodes. Especially, the Li/B-SiOx@C and graphite composite anodes with a capacity of 531.5 mA h g-1 were demonstrated to show an ICE of 90.1% and superior cycling stability (90.1% capacity retention after 250 cycles), which is significant for the practical application of high-energy-density LIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.