Abstract

AbstractThe lithium–sulfur (Li–S) battery is a promising high‐energy‐density storage system. The strong anchoring of intermediates is widely accepted to retard the shuttle of polysulfides in a working battery. However, the understanding of the intrinsic chemistry is still deficient. Inspired by the concept of hydrogen bond, herein we focus on the Li bond chemistry in Li–S batteries through sophisticated quantum chemical calculations, in combination with 7Li nuclear magnetic resonance (NMR) spectroscopy. Identified as Li bond, the strong dipole–dipole interaction between Li polysulfides and Li–S cathode materials originates from the electron‐rich donors (e.g., pyridinic nitrogen (pN)), and is enhanced by the inductive and conjugative effect of scaffold materials with π‐electrons (e.g., graphene). The chemical shift of Li polysulfides in 7Li NMR spectroscopy, being both theoretically predicted and experimentally verified, is suggested to serve as a quantitative descriptor of Li bond strength. These theoretical insights were further proved by actual electrochemical tests. This work highlights the importance of Li bond chemistry in Li–S cell and provides a deep comprehension, which is helpful to the cathode materials rational design and practical applications of Li–S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.