Abstract

NanoSIMS isotopic measurements of Li, Be, and B in individual hibonite grains extracted from the Murchison meteorite revealed that 10B excesses correlate with the 9Be/11B ratios in 26Al-free PLAty hibonite Crystals. From these data, an initial 10Be/9Be = (5.5 ± 1.6) × 10–4 (2σ) and 10B/11B = 0.2508 ± 0.0015 can be inferred. On the other hand, chondritic boron isotopic compositions were found in 26Al-bearing Spinel-HIBonite spherules, most likely due to contamination with normal boron. No 7Li excesses due to 7Be decay were observed. When combined with previously reported data, the new data yield the best defined 10Be/9Be = (5.3 ± 1.0) × 10–4 (2σ) and 10B/11B = 0.2513 ± 0.0012 for PLACs. A comparison of this value and the best constrained 10Be/9Be = (8.8 ± 0.6) × 10–4 in CV Ca-Al-rich inclusions supports a heterogeneous distribution of 10Be and its protosolar irradiation origin. We consider two possible irradiation scenarios that could potentially lead to the observed Li-Be-B isotopic compositions in PLACs. Although in situ irradiation of solids with hibonite chemistry seems to provide the simplest explanation, more high quality data will be needed for quantitatively constraining the irradiation history.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.