Abstract

In order to accurately identify the state of health (SOH) and remaining useful life (RUL) of lithium-ion batteries, this paper proposes an SOH estimation algorithm for lithium-ion batteries based on stream learning and LightGBM. To address the problem of inconsistent data length, which makes it difficult to establish the state mapping relationship between degraded data and health state, the health factors in this paper are extracted from capacity degradation features, entropy features, and correlation coefficient features. Then, the landmark isometric mapping (L-ISOMAP) manifold learning algorithm is used to dimensionally reduce the input feature set and map the high-dimensional features to the low-dimensional space to solve the dimensional explosion problem. Finally, a LightGBM prediction model is developed to perform SOH prediction on different datasets, and the superiority of the multidimensional model is evaluated. The experimental results show that the goodness-of-fit is 0.98 and above, and the MSE values are below 4 × 10−4. Comparing several prediction models, the LightGBM model has the best performance and better results in several indexes, such as MSE and RMSE. Under different working conditions, the proposed model in this paper has a goodness-of-fit of more than 0.98 in dataset B, which proves that the proposed model has a strong generalization ability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.