Abstract

AbstractThe synthesis of a new type of redox‐active covalent triazine framework (rCTF) material, which is promising as an anode for Li‐ion batteries, is reported. After activation, it has a capacity up to ≈1190 mAh g−1 at 0.5C with a current density of 300 mA g−1 and a high cycling stability of over 1000 discharge/charge cycles with a stable Coulombic efficiency in an rCTF/Li half‐cell. This rCTF has a high rate performance, and at a charging rate of 20C with a current density of 12 A g−1 and it functions well for over 1000 discharge/charge cycles with a reversible capacity of over 500 mAh g−1. By electrochemical analysis and theoretical calculations, it is found that its lithium‐storage mechanism involves multi‐electron redox‐reactions at anthraquinone, triazine, and benzene rings by the accommodation of Li. The structural features and progressively increased structural disorder of the rCTF increase the kinetics of infiltration and significantly shortens the activation period, yielding fast‐charging Li‐ion half and full cells even at a high capacity loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.