Abstract

Lithium (Li) metal is deemed as attractive anode due to its low electrochemical potential and high theoretical capacity. Nevertheless, the uncontrollable Li dendrite growth causes safety concern and battery failure, which severely impedes the commercialization of Li metal batteries (LMBs). Herein, 3D functional matrix comprising NiFe-layered-double-hydroxide nanosheet arrays (NiFe-LDH) evenly dispersed on acidified carbon cloth (NiFe-LDH@ACC) via hydrothermal method is designed to manipulate uniform Li electrodeposition morphology. Vertical NiFe-LDH nanosheets possess high accessible surface area to supply vast Li nucleation sites, thus effectively reducing the local current density and decreasing the nucleation energy barrier to suppress Li dendrites growth, which has been validated by simulation. Moreover, 3D structure of carbon cloth provides adequate space for storing Li metal, substantially abating volume fluctuation during repeated Li plating/stripping process. Consequently, the Li@NiFe-LDH@ACC electrode manifests ultra-long lifespan over 3500 h and low-voltage hysteresis in symmetric cells. Additionally, the full cell with limited Li@NiFe-LDH@ACC anode and commercial LiFePO4 cathode (mass loading: 8.35 mg cm−2) displays good rate capacity from 0.2 C to 5 C, and can steadily operate for 75 cycles at 2 C with a capacity of 131 mAh g−1, revealing the practical feasibility of the surface modification strategy for constructing advanced Li metal anode with high safety and appealing durability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call