Abstract

Ion chromatography was used to investigate the stability of LiTFSI in water at various temperatures. The addition of HNO3, LiOH and HTFSI as pH adjustment measures was studied and the long-term stability of the electrolytes at different pH values stored at 60°C investigated. A minor degradation product was found upon the addition of HNO3 to the electrolyte and identified via electrospray ionization mass spectrometry. The compound was formed only in traces immediately after the acidification and the concentration is not increasing over time. Electrochemical stability window investigations, using two different methods, indicate the wide applicable potential range of the aqueous LiTFSI electrolyte, which, combined with the high stability of the TFSI anion vs. hydrolysis and elevated temperature, smoothens the path for a possible application in aqueous lithium-ion systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.