Abstract
Abstract: Diabetic retinopathy (DR) is a medical condition that damages eye retinal tissues. Diabetic retinopathy leads to mild to complete blindness. It has been a leading cause of global blindness. The identification and categorization of DR take place through the segmentation of parts of the fundus image or the examination of the fundus image for the incidence of exudates, lesions, microaneurysms, and so on. This research aims to study and summarize various recent proposed techniques applied to automate the process of classification of diabetic retinopathy. In the current study, the researchers focused on the concept of classifying the DR fundus images based on their severity level. Emphasis is on studying papers that proposed models developed using transfer learning. Thus, it becomes vital to develop an automatic diagnosis system to support physicians in their work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Research in Applied Science and Engineering Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.