Abstract

Combined heat and power technologies represent an efficient way to ensure energy efficiency, as they promote usage of both electrical and thermal energy, something not done by most traditional energy sources, especially in residential environments. In this context, high-temperature proton exchange membrane fuel cells allow the implementation of combined heat and power systems. Additionally, in this environment, fuel cells are more efficient and less polluting than their traditional counterparts. We present a literature review of energy management in residential systems based on this type of fuel cell. In addition, we classify and detail the current state of fuel cell technologies, paying special attention to their characteristics, mathematical modelling and control, as well as combined heat and power systems and energy management strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.