Abstract

Over a period spanning more than 30 years, several ramp metering algorithms have been developed to improve the operation of freeways. Many of these algorithms were deployed in several regions of the world, and field evaluations have shown their significance to improve traffic conditions on freeways and ramps. Previous reviews of ramp metering algorithms focused more on the research outcomes and evaluations of traditional metering algorithms developed in the early stage of ramp metering research. The purpose of this paper is to cover the more recent developments in ramp metering in relation to the traditional metering strategies. Several local and coordinated ramp metering algorithms were reviewed. In summary, Asservissement Linéaire d’Entrée Autoroutière (ALINEA) was found to be the most widely deployed local ramp metering strategy. The algorithm is simple and implementation costs less than other strategies. It also guarantees the targeted performance goals provided that the on-ramp has sufficient storage. Several extensions were proposed in the literature to fine-tune its performance. Among the coordinated metering strategies, zone based metering is simple to implement and easy to re-configure. System-wide adaptive ramp metering (SWARM) algorithm is more sensitive to calibrate for accurate prediction of traffic states. Heuristic ramp-metering coordination (HERO) algorithm can be useful if both local and coordinated control are desired particularly if the local control is using ALINEA. Fuzzy logic based algorithms are gaining popularity because of the simplicity and the fast re-configuration capability. Advanced real time metering system (ARMS) seems theoretically promising because of its proactive nature to prevent congestion; however, its performance is highly dependent upon accurate predictions. Finally, some guidelines were proposed for future research to develop new proposals and to extend the existing algorithms for guaranteed performance solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.