Abstract

To explore the pathogenesis mechanism of hypertrophic scar (HS) and the effective means for its clinical treatment, the difference of the gene expressions between HS and normal skin was compared. The differentially expressed genes between HS and normal skin were obtained by mining PubMed. The dysregulated genes in HS were analyzed by a series of bioinformatics methods, including protein-protein interaction networks, pathways, Gene Ontology and functional annotation clustering analysis. A total of 55 dysregulated genes in HS was identified (46 up-regulated genes and 9 down-regulated genes). Fifty-one genes were found to encode proteins with interaction network, including up-regulated genes TGFB1, FN1, JUN, COL1A1, CTGF, VEGFA, FOS, COL3A1, IGF1, IL4, PELO, SMAD2, TIMP1, PCNA, and ITGA4 and down-regulated genes ITGB1 and DCN as the central nodes for this network. The dysregulated genes in HS involved in a variety of biological pathways, such as focal adhesion formation, integrin signal transduction, and tumor formation. Furthermore, the dysregulated genes in HS played the important roles in biological processes of cell surface receptor linked signal transduction, tissue development, cell proliferation and apoptosis, and macromolecule biosynthetic process, as well as in molecular function of calcium ion binding, double-stranded DNA binding, heparin binding, promoter binding and MAP kinase activity. The results of functional annotation clustering analysis revealed that the dysregulated genes in HS involved in epidermis development, angiogenesis, and apoptosis. Such key genes as TGFB1, FN1, and JUN, along with the pathways, biological processes and molecular functions involving epidermis development, angiogenesis, and extracellular matrix-integrin-focal adhesion signal transduction may play the important roles in the development of HS. The investigations of the dysregulated genes in HS could provide the new targets for clinical treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.