Abstract
Efficient polynomial time algorithms are well known for the minimum spanning tree problem. However, given an undirected graph with integer edge weights, minimum spanning trees may not be unique. In this article, we present an algorithm that lists all the minimum spanning trees included in the graph. The computational complexity of the algorithm is O(N(mn+n 2 log n)) in time and O(m) in space, where n, m and N stand for the number of nodes, edges and minimum spanning trees, respectively. Next, we explore some properties of cut-sets, and based on these we construct an improved algorithm, which runs in O(N m log n) time and O(m) space. These algorithms are implemented in C language, and some numerical experiments are conducted for planar as well as complete graphs with random edge weights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.