Abstract

Pregnancy is a high-risk factor for foodborne pathogen Listeria monocytogenes (Lm), which causes abortion, premature birth, or stillbirth. The primary route of Lm transmission is oral hence intestinal epithelial barrier crossing is a prerequisite for systemic spread. Intestinal barrier crossing, in part, is attributed to the interaction of Listeria adhesion protein (LAP) with its cognate receptor, Hsp60. In a recent study, we showed that oral-dosing of bioengineered Lactobacillus caseiprobiotic (BLP) expressing the LAP protected nonpregnant mice from lethal infection; however, its ability to prevent listeriosis during pregnancy is not known. Therefore, we investigated whether BLP could prevent fetoplacental transmission of Lm in a pregnant guinea pig model. After 14 consecutive days on probiotic (~109 CFU/ml in drinking water), pregnant guinea pigs (gestational days 24–28) were orally challenged with Lm (9 × 108–2.5 × 109 CFU/animal) and were euthanized 72 h post-infection. Maternal mesenteric lymph node (MLN), liver, spleen, lungs, blood, and placenta, and fetal liver were analyzed for the presence/absence of Lm. All tissues/organs from Lm-challenged naïve dams and fetuses were Lm positive. Similar tissue distribution was also seen in guinea pigs that received wild-type Lactobacillus casei (LbcWT). Remarkably, Lm was absent in the maternal blood, kidney, lungs, and placenta, and fetal liver from the BLP-fed group even though the Lm was present in the maternal liver, spleen, and MLN. BLP feeding also suppressed Lm-induced inflammatory response in mothers. These data highlight the potential for the prevention of fetoplacental transmission of Lm by LAP-expressing BLP during pregnancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.