Abstract

Immune-nociceptor connections are found in animals across phyla. Local inflammation and/or damage results in increased nociceptive sensitivity of the affected area. However, in mammals, immune responses far from peripheral nociceptors, such as immune responses in the gut, produce a general increase in peripheral nociceptive sensitivity. This phenomenon has not, to our knowledge, been found in other animal groups. We found that consuming heat-killed pathogens reduced the tactile force needed to induce a defensive strike in the caterpillar Manduca sexta. This increase in the nociceptive sensitivity of the body wall is probably part of the reconfiguration of behaviour and physiology that occurs during an immune response (e.g. sickness behaviour). This increase may help enhance anti-predator behaviour as molecular resources are shifted towards the immune system. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.