Abstract

We have developed a high-frequency pulsed-wave Doppler ultrasound probe as a promising minimally-invasive technique for measuring intracochlear mechanics without damaging the cochlea. Using a custom high-frequency ultrasound system, we have measured dynamic motion of intracochlear structures by recording the pulsed-wave Doppler signal resulting from the vibration of the basilar and round window membranes. A 45 MHz needle-mounted Doppler probe was fabricated and placed against the round window membranes of eight different fresh human temporal bones. Pulsed-wave ultrasonic Doppler measurements were performed on the basilar membrane and round window membrane during the application of pure tones to the external ear canal. Doppler vibrational information for acoustic input frequencies ranging from 100–2000 Hz was collected and normalized to the sound pressure in the ear canal. The middle ear resonance, located at approximately 1000 Hz, could be characterized from the membrane velocities, which agreed well with literature values. The maximum normalized mean velocity of the round window and the basilar membrane were 180 μm/s/Pa and 27 μm/s/Pa at 800 Hz. The mean phase difference between the membrane displacements and the applied ear canal sound pressure showed a flat response almost up to 500 Hz where it began to accumulate. This is the first study that reports the application of high frequency pulsed wave Doppler ultrasound for measuring the vibration of basilar membrane through the round window. Since it is not required to open or damage the cochlea, this technique might be applicable for investigating cochlear dynamics, in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call