Abstract

Polarization-adjusted convolutional (PAC) codes are special concatenated codes in which we employ a one-to-one convolutional transform as a pre-coding step before the polar transform. In this scheme, the polar transform (as a mapper) and the successive cancellation process (as a demapper) present a synthetic vector channel to the convolutional transformation. The numerical results show that this concatenation improves the Hamming distance properties of polar codes. Motivated by the fact that the parallel list Viterbi algorithm (LVA) sorts the candidate paths locally at each trellis node, in this work, we adapt the trellis, path metric, and the local sorter of LVA to PAC codes and show how the error correction performance moves from the poor performance of the Viterbi algorithm (VA) to the superior performance of list decoding by changing the constraint length, list size, and the sorting strategy (local sorting and global sorting) in the LVA. Also, we analyze the complexity of the local sorting of the paths in LVA relative to the global sorting in the list decoding and we show that LVA has a significantly lower sorting complexity compared with list decoding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.