Abstract

Understanding the limits of list-decoding and list-recovery of Reed-Solomon (RS) codes is of prime interest in coding theory and has attracted a lot of attention in recent decades. However, the best possible parameters for these problems are still unknown, and in this paper, we take a step in this direction. We show the existence of RS codes that are list-decodable or list-recoverable beyond the Johnson radius for <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">every</i> rate, with a polynomial field size in the block length. In particular, we show that for every <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\epsilon \in (0,1)$ </tex-math></inline-formula> there exist RS codes that are list-decodable from radius <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$1-\epsilon $ </tex-math></inline-formula> and rate less than <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\frac {\epsilon }{2-\epsilon }$ </tex-math></inline-formula> , with constant list size. We deduce our results by extending and strengthening a recent result of Ferber, Kwan, and Sauermann on puncturing codes with large minimum distance and by utilizing the underlying code’s linearity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call