Abstract

We present a confocal fluorescent endomicroscopic system with a Lissajous scan using an asymmetric polymer tube and piezoelectric (PZT) tube actuator. The fiber cantilever’s scanning part is often inside the PZT tube actuator to reduce the scanner’s rigid length and enhance the beam deflection via a lever mechanism. Here, the mathematical model of the PZT tube actuator-based lever mechanism is first proposed by considering the piezoelectric parameters of the actuator and Euler-Bernoulli beam deflection, showing a good agreement with experimental data. In addition, an elliptical polymer tube is used to divide the resonant frequencies of the fiber cantilever, allowing enough scanning amplitudes and alleviating the inherent cross-coupling issue of a PZT tube actuator. The design optimization is performed by selecting the optimal lever length and the shape of the PFA tube. The implemented endomicroscopic probe could successfully acquire imaging results from both a lens-cleaning tissue and an ex-vivo mouse colon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.