Abstract
Cytoplasmic dynein is a microtubule-based motor protein that transports intracellular cargo and performs various functions during cell division. We previously reported that Lis1 suppressed dynein motility on microtubules in an idling state. Recently, a model showed that Lis1 prevents the ATPase domain of dynein from transmitting a detachment signal to its microtubule-binding domain. However, conformational information on dynein is limited. We used electron microscopy to investigate the conformation of dynein and nucleotide-induced conformational changes on microtubules. The conformation of dynein differed depending on the presence or absence of a nucleotide. In the presence of the nucleotide ADP-vanadate, dynein displayed an extended form on microtubules (extended form), whereas in the absence of a nucleotide, dynein lay along microtubules (compact form). This conformational change reflects chemomechanical coupling in dynein walking on microtubules. We also found that Lis1 fixed the conformation of dynein in the compact form regardless of the nucleotide condition. Removal of the Lis1 dimerization motif abolished Lis1-dependent fixation of dynein in the compact form. This suggests that the idling state of dynein on microtubules induced by Lis1 occurs through the Lis1-dependent arrest of dynein chemomechanical coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.