Abstract

BackgroundChronic endometritis (CE), a gynecological disease, is characterized by inflammation. Liriodendrin is reported to exhibit anti-inflammatory properties. However, the therapeutic effects of liriodendrin on CE and the underlying molecular mechanisms have not been elucidated. This study aimed to investigate the therapeutic effects of liriodendrin on CE in rats and the underlying mechanisms. MethodsA CE rat model was established and administered with liriodendrin for 21 days. The serum levels of inflammatory cytokines were examined using enzyme-linked immunosorbent assay. The uterine mRNA levels of cytokines were examined using quantitative real-time polymerase chain reaction analysis. The activation of the Toll-like receptor 4 (TLR4)/NF-κB pathway was investigated using western blotting analysis. The effects of liriodendrin on intestinal flora and serum metabolites were examined using 16S rRNA sequencing and untargeted serum metabolomics, respectively. The protein and mRNA levels of arginase-2 (Arg-2) and the nitric oxide (NO) metabolic pathway-related factors were assessed. Molecular docking was performed to explore the interaction between liriodendrin and Arg-2. ResultsLiriodendrin alleviated the CE-induced pathological changes in the uterus, modulated the serum levels of inflammatory cytokines, and downregulated the mRNA and protein levels of TLR4/NF-κB pathway-related factors. Treatment with liriodendrin mitigated the CE-induced upregulation of Firmicutes/Bacteroidetes ratio and Lachnospiraceae abundance and downregulation of Ruminococcaceae abundance. Serum metabolomic analysis revealed that liriodendrin regulated the biosynthesis of choline metabolism pathway-related factors. Liriodendrin suppressed the CE-induced upregulation of Arg-2 and downregulation of inducible nitric oxide synthase (iNOS) expression, and NO levels by directly binding to the amino acid residues of Arg-2 through hydroxyl bonds. ConclusionsLiriodendrin exerted therapeutic effects on CE in rats through the alleviation of inflammation by modulating the gut microbiota structure, directly downregulating Arg-2, and regulating the arginine/NO metabolic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call