Abstract

A small fraction of giants possess photospheric lithium (Li) abundance higher than the value predicted by the standard stellar evolution models, and the detailed mechanisms of Li enhancement are complicated and lack a definite conclusion. In order to better understand the Li enhancement behaviors, a large and homogeneous Li-rich giant sample is needed. In this study, we designed a modified convolutional neural network model called Coord-DenseNet to determine the A(Li) of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) low-resolution survey (LRS) giant spectra. The precision is good on the test set: MAE = 0.15 dex, and σ = 0.21 dex. We used this model to predict the Li abundance of more than 900,000 LAMOST DR8 LRS giant spectra and identified 7768 Li-rich giants with Li abundances ranging from 2.0 to 5.4 dex, accounting for about 1.02% of all giants. We compared the Li abundance estimated by our work with those derived from high-resolution spectra. We found that the consistency was good if the overall deviation of 0.27 dex between them was not considered. The analysis shows that the difference is mainly due to the high A(Li) from the medium-resolution spectra in the training set. This sample of Li-rich giants dramatically expands the existing sample size of Li-rich giants and provides us with more samples to further study the formation and evolution of Li-rich giants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.