Abstract

BackgroundAs a new anti-diabetic medicine, Liraglutide (LIRA), one of GLP-1 analogues, has been found to have an anti-atherosclerotic effect. Since vascular smooth muscle cells (VSMCs) play pivotal roles in the occurrence of diabetic atherosclerosis, it is important to investigate the role of LIRA in reducing the harmful effects of high-glucose (HG) treatment in cultured VSMCs, and identifying associated molecular mechanisms.MethodsPrimary rat VSMCs were exposed to low or high glucose-containing medium with or without LIRA. They were challenged with HG in the presence of phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK)1/2, or glucagon-like peptide receptor (GLP-1R) inhibitors. Cell proliferation and viability was evaluated using a Cell Counting Kit-8. Cell migration was determined by Transwell migration and scratch wound assays. Flow cytometry and Western blotting were used to determine apoptosis and protein expression, respectively.ResultsUnder the HG treatment, VSMCs exhibited increased migration, proliferation, and phosphorylation of protein kinase B (Akt) and ERK1/2, along with reduced apoptosis (all p < 0.01 vs. control). These effects were significantly attenuated with LIRA co-treatment (all p < 0.05 vs. HG alone). Inhibition of PI3K kinase and ERK1/2 similarly attenuated the HG-induced effects (all p < 0.01 vs. HG alone). GLP-1R inhibitors effectively reversed the beneficial effects of LIRA on HG treatment (all p < 0.05).ConclusionsHG treatment may induce abnormal phenotypes in VSMCs via PI3K and ERK1/2 signaling pathways activated by GLP-1R, and LIRA may protect cells from HG damage by acting on these same pathways.

Highlights

  • As a new anti-diabetic medicine, Liraglutide (LIRA), one of Glucagon-like peptide (GLP)-1 analogues, has been found to have an anti-atherosclerotic effect

  • Collectively, this study shows that HG treatment facilitates migration and proliferation of vascular smooth muscle cells (VSMCs), inhibits cell apoptosis, and increases the phosphorylation of ERK1/2 and Akt

  • These effects are attenuated by LIRA pretreatment; LIRA treatment reduced HG-induced phosphorylation of ERK1/2 and Akt, suppressed cell migration and proliferation, and increased cell apoptosis

Read more

Summary

Introduction

As a new anti-diabetic medicine, Liraglutide (LIRA), one of GLP-1 analogues, has been found to have an anti-atherosclerotic effect. Since vascular smooth muscle cells (VSMCs) play pivotal roles in the occurrence of diabetic atherosclerosis, it is important to investigate the role of LIRA in reducing the harmful effects of high-glucose (HG) treatment in cultured VSMCs, and identifying associated molecular mechanisms. HG-induced alterations to VSMC cell migration, proliferation, and apoptosis may represent promising therapies for protecting blood vessels against diabetic atherosclerosis. The mechanisms by which HG influences VSMC migration, proliferation, and apoptosis remain unclear, in vitro studies indicate involvement of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways [10]. Hyperglycemia can activate the ERK1/2 pathway in aortic VSMCs [13,14], and HG activates ERK1/2 in cultured VSMCs, which could be an essential event in mediating increased proliferation and migration, and reduced apoptosis [13,15,16,17,18,19]. Hyperglycemia may inhibit apoptosis [16,20,21] and increase proliferation of VSMCs via activating PI3K/Akt [22,23]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call