Abstract

Acute kidney injury (AKI) is a challenging side effect which may clinically impede the use of gentamicin (GM). The present study explored the impact of liraglutide (Lir) on GM-induced kidney injury in rats. Lir (0.2 and 0.4mg/kg, s.c) was given for 10days (a dose/day) starting 3days before giving GM (100mg/kg, i.p) once daily for 7days. Interestingly, Lir notably ameliorated GM-induced elevated levels of renal injury markers; urea and creatinine. Moreover, Lir remarkably mitigated malondialdehyde (MDA) level and elevated glutathione (GSH) level as well as superoxide dismutase (SOD) activity. Also, Lir pre-treatment notably diminished inflammatory markers levels; interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), vascular cell adhesion molecule (VCAM), monocyte chemoattractant protein 1 (MCP-1) and interferon gamma (INF-γ). In addition, Lir significantly replenished expression of Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α), Protein kinase A (PKA), cAMP response element-binding protein (CREB), nuclear Nuclear factor erythroid 2-related factor 2 (Nrf2), heme Oxygenase-1 (HO-1), B-cell lymphoma 2 (Bcl-2), and remarkably attenuated expression of Notch homolog 1 (Notch1), Hairy and enhancer of split-1 (Hes-1), Bcl-2-associatedX(Bax), cleaved caspase 3 and nuclear Nuclear factor Kappa B (NF-κB (p65)). The nephroprotective activity of Lir was further confirmed by histopathological examination as well as transmission electron microscopy (TEM). In conclusion Lir achieved its nephroprotective effects through the amelioration of oxidative stress, inflammatory and apoptotic manifestations. It is worth-mentioning that the current study is the first to focus on the involvement of mitochondrial biogenesis and its upstream regulators, PKA/CREB and Notch/Hes-1 signaling pathways in the nephroprotective potentials of Lir. The attenuation of the aforementioned injurious aspects is partially attributed to the improvement of the mitochondrial status as demonstrated by elevated PGC-1α expression via acceleration of PKA/CREB and abatement of Notch/Hes-1 signaling pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call