Abstract

The use of NPS compounds is increasing, and impairment in spatial learning and memory is a growing concern. Alpha-pyrrolidinovalerophenone (α-PVP) consumption, as a commonly used NPS, can impair spatial learning and memory via the brain mitochondrial dysfunction mechanism. Liraglutide isone of the most well-known Glucagon-Like Peptide 1 (GLP-1) agonists that is used as an anti-diabetic and anti-obesity drug. According to current research, Liraglutide likely ameliorates cognitive impairment in neurodegenerative conditions and substance use disorders. Hence, the purpose of this study is examining the effect of Liraglutide on α-PVP-induced spatial learning and memory problems due to brain mitochondrial dysfunction. Wistar rats (8 in each group) received α-PVP (20 mg/kg/d for 10 consecutive days, intraperitoneally (I.P.)). Then, Liraglutide was administered at 47 and 94 μg/kg/d, I.P., for 4 weeks following the α-PVP administration. The Morris Water Maze (MWM) task evaluated spatial learning and memory 24 h after Liraglutide treatment. Bedside, brain mitochondrial activity parameters, including reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), cytochrome c release, mitochondrial outer membrane damage and swelling, and brain ADP/ATP ratio, were studied. Our results showed that Liraglutide ameliorated α-PVP-induced spatial learning and memory impairments through alleviating brain mitochondrial dysfunction (which is indicated by increasing ROS formation, collapsed MMP, mitochondrial outer membrane damage, cytochrome c release, mitochondrial swelling, and increased brain ADP/ATP ratio). This study could be used as a starting point for future studies about the possible role of Liraglutide in ameliorating mitochondrial dysfunction leading to substance use disorder- induced cognitive impairment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.