Abstract

The guanidinium cation (C(NH2)3(+)) is a highly stable cation in aqueous solution due to its efficient solvation by water molecules and resonance stabilization of the charge. Its salts increase the solubility of nonpolar molecules ("salting-in") and decrease the ordering of water. It is one of the strongest denaturants used in biophysical studies of protein folding. We investigate the behavior of guanidinium and its derivative, methyl guanidinium (an amino acid analogue) at the air-water surface, using atomistic molecular dynamics (MD) simulations and calculation of potentials of mean force. Methyl guanidinium cation is less excluded from the air-water surface than guanidinium cation, but both cations show orientational dependence of surface affinity. Parallel orientations of the guanidinium ring (relative to the Gibbs dividing surface) show pronounced free energy minima in the interfacial region, while ring orientations perpendicular to the GDS exhibit no discernible surface stability. Calculations of surface fluctuations demonstrate that, near the air-water surface, the parallel-oriented cations generate significantly greater interfacial fluctuations compared to other orientations, which induces more long-ranged perturbations and solvent density redistribution. Our results suggest a strong correlation with induced interfacial fluctuations and ion surface stability. These results have implications for interpreting molecular-level, mechanistic action of this osmolyte's interaction with hydrophobic interfaces as they impact protein denaturation (solubilization).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.