Abstract

Calcium ferrite slags, which are represented by the “Cu2O”-FeO-Fe2O3-CaO system at copper saturation, have been applied successfully to existing copper-converting processes. Because of the industrial importance of this system, the characterization of the effects of oxygen partial pressure and silica on the phase equilibria is necessary to improve the control of process parameters, which include fluxing and operating temperatures. In the current study, experimental methods, which use the equilibration/quenching/electron probe X-ray microanalysis (EPMA) techniques with primary phase substrate support, were subsequently developed to incorporate fixed oxygen partial pressure experiments. Experiments were carried out at 1200 °C and 1250 °C both with and without silica additions; both liquidus and solidus data were reported for the primary phase field of spinel and dicalcium ferrite between the oxygen partial pressures of 10−5.0 and 10−6.5 atm. The analyzed compositions of the liquid and solid phases are used to construct the phase diagram of the pseudoternary “Cu2O”-“Fe2O3”-CaO system in equilibrium with metallic copper at fixed oxygen partial pressures and with additions of silica. The maximum solubility of silica within the liquid slag phase, prior to dicalcium silicate precipitation, was measured at specific conditions. Two empirical equations used for the calculation of the copper oxide concentration in calcium ferrite slag are evaluated with the new experimental data defined in the current study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call