Abstract
Mass transfer coefficient kls was measured over a range of flow rates of gas Ug= 0-100 cm.s-1 and liquid Ul=0.05-25 cm.s-1 in a column packed with spheres of three different diameters d=2.8-12.7 mm. The systems used were the dissolution of benzoic acid in water and diffusionlimited oxidation of brass with dichromate ion in sulfuric acid solution. The effect of Ug on kls is not found at all in gas continuous flow, is the greatest in pulse flow and becomes less significant again in dispersed bubble flow. The value of kls increases rapidly around the transition from gas continuous to pulse flow. The enhancement factor β (=kls in two-phase flow/kls in single-phase flow) increases from 1.2 to 2 with increasing d in gas continuous flow while it equals the reciprocal of liquid holdup in pulse and dispersed bubble flows. A liquid-film analogy in gas continuous flow and a single-phase analogy in pulse and dispersed bubble flows are proposed and the experimental results are examined in the light of them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.