Abstract

Stepwise synthetic assembly of polypeptide chains reversibly linked to polyethylene glycol represents a hybrid between traditional solution and solid-phase chemistries and combines the inherent advantages of both approaches. The technical simplicity and scalability of the liquid-phase peptide synthesis method renders it particularly attractive for multiple parallel syntheses, combinatorial approaches and the large-scale preparation of peptides. The versatile protection strategy based on the N alpha-fluorenylmethoxycarbonyl group commonly used in solid-phase peptide synthesis was adapted to the liquid-phase approach. Fluoride ions were used rather than the conventional organic base piperidine for the repetitive amino-deprotection step. Using a range of acid- and base-labile linkers between the polymer and the peptide, it was shown that free and fully side-chain protected peptides can be obtained using our version of the liquid-phase peptide synthesis method. Protocols for simultaneous multiple syntheses requiring a minimum of equipment are presented and the use of polyethylene glycol-bound peptides in biochemical binding and functional assay systems is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call