Abstract

The kinetics of the three-phase methanol synthesis over a commercial Cu–Zn–Al 2O 3 catalyst were studied in an apolar solvent, squalane and a polar solvent, tetraethylene glycol dimethylether (TEGDME). Experimental conditions were varied as follows: P=3.0–5.3 MPa, T=488–533 K and Φ vG/ w=7.5×10 −3–8×10 −3 Nm 3 s −1kg −1 cat. The nature of the slurry–liquid influences the activation energy and the kinetic rate constant by interaction between adsorbed species and solvent and by competitive adsorption of the solvent on the catalyst surface. The rate of reaction to methanol observed in TEGDME appeared to be about 10 times lower than in squalane. TEGDME reduces the reaction rate, which is a disadvantage for its use as a solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.