Abstract
The liquid-phase interaction between isobutane and butenes at 303 K and 2.5–3.0 MPa has been investigated using activated aluminum (Al*)-tert-butyl chloride (TBC) model system (TBC: Al* = 0.35−4 mol/mol). It has been demonstrated by attenuated total reflection FT-IR (ATR-FT-IR) spectroscopy that the catalytically active aluminum chloride complexes forming in situ in the hydrocarbon medium vary in composition. Alkylation as such takes place at equimolar proportions of the reactants (TBC: Al* = 1: 1) and butenes feed 1mass flow rate of 5 h−1 per gram of Al*. According to ATR-FT-IR data, the most abundant aluminum complexes resulting under these conditions are the AlCl4− and Al2Cl7− ions and, probably, the molecular complex AlCl3 · sec-C4H9Cl. In a fourfold excess of TBC over Al* at butenes mass feed rate of 2.5 h−1, isobutane undergoes self-alkylation. In this case, the Al2Cl7− ion is not detected and the most abundant complexes are AlCl4−, Al3Cl10− and the molecular species AlCl3 · tert-C4H9Cl. It is hypothesized that the Al2Cl7− ion plays the key role in the liquid-phase alkylation of isobutane with butenes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.