Abstract

A simple liquid–liquid–liquid microextraction with automated movement of the acceptor and the donor phase (LLLME/AMADP) technique is described for the quantitative determination of five phenoxyacetic acids in water using a disposable and ready to use hollow fiber. The target compounds were extracted from the acidified sample solution (donor phase) into the organic solvent residing in the pores of the hollow fiber and then back extracted into the alkaline solution (acceptor phase) inside the lumen of the hollow fiber. The fiber was held by a conventional 10-μl syringe. The acceptor phase was sandwiched between the plunger and a small volume of the organic solvent (microcap). The acceptor solution was repeatedly moved in and out of the hollow fiber assisted by a programmable syringe pump. This repeated movement provides a fresh acceptor phase to come in-contact with the organic phase and thus enhancing extraction kinetics leading to high enrichment of the analytes. The microcap separates the aqueous acceptor phase and the donor phase in addition of being partially responsible for mass transfer of the analytes from donor solution (moving in and out of the hollow fiber from the open end of the fiber) to the acceptor solution. Separation and quantitative analyses were then performed using liquid chromatography (LC) with ultraviolet (UV) detection at 280 nm. Various parameters affecting the extraction efficiency viz. type of organic solvent used for immobilization in the pores of the hollow fiber, extraction time, stirring speed, effect of sodium chloride, and concentration of donor and acceptor phases were studied. Repeatability (RSD, 3.2–7.4%), correlation coefficient (0.996–0.999), detection limit (0.2–2.8 ng ml −1) and enichment factors (129–240) were also investigated. Relative recovery (87–101%) and absolute recoveries (4.6–13%) have also been calculated. The developed method was applied for the analysis of river water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.