Abstract

N-Benzoylthioureas have been reported to form complexes with gold (III) and palladium (II) and other transition metals. In this study, an N-benzoyl- N′, N′-diethylthiourea ( 3f) ligand was used in the solvent extraction of palladium(II) and gold(III) from aqueous chloride media (0.1 mol l −1 NaCl). The distribution coefficient was determined as a function of both metal concentration in the aqueous phase and extractant concentration in the organic phase. The experimental distribution data were numerically analysed by letagrop-distr software in order to obtain the thermodynamic model corresponding to the metal extraction. It is found that pH does not affect the metal extraction process in the 1–2 pH range. Synthesis of the palladium benzoyl thiourea complexes was carried out by mixing quantities of metal and ligand solutions in methanol in a 1:2 ratio stoichiometric. Yields of 74 and 80.9% were obtained for the Pd-3c and Pd-3f complexes. In order to confirm the formation of the palladium complexes, NMR, FTIR and MS analyses were performed. From MS analyses a complex stoichiometry 1:2 (metal:ligand) was confirmed. The formation of crystals of palladium N-benzoyl- N′, N′-diethylthiourea complex (Pd-3f) in the methanolic solution allows the characterisation of the complex structure by XRD. The resulting structure is described and discussed. Bis(1,1,-diheptadecyl-3-benzoyl-thioureate)palladium(II) (Pd-3c) and bis(1,1,-diheptadecyl-3-benzoyl-thioureate)palladium(II) (Pd-3f) were used as ionophores in polymeric membrane electrodes. Their potentiometric responses to different anionic metal chlorocomplexes are evaluated and discussed taking into consideration the results obtained in the liquid–liquid distribution studies. A nernstian response was only obtained for AuCl 4 − (PDL=8.8×10 −8) and PdCl 4 2− (PDL=1.5×10 −4 M) with a selectivity coefficient of K AuCl 4 -, PdCl 4 2− pot=−3.4, calculated taking AuCl 4 − as being the primary anion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.