Abstract
We show that including a term which accounts for finite liquidity in portfolio optimization naturally mitigates the instabilities that arise in the estimation of coherent risk measures on finite samples. This is because taking into account the impact of trading in the market is mathematically equivalent to introducing a regularization on the risk measure. We show here that the impact function determines which regularizer is to be used. We also show that any regularizer based on the norm [Formula: see text] with [Formula: see text] makes the sensitivity of coherent risk measures to estimation error disappear, while regularizers with [Formula: see text] do not. The [Formula: see text] norm represents a border case: its “soft” implementation does not remove the instability, but rather shifts its locus, whereas its “hard” implementation (including hard limits or a ban on short selling) eliminates it. We demonstrate these effects on the important special case of expected shortfall (ES) which has recently become the global regulatory market risk measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Theoretical and Applied Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.