Abstract
This paper develops a novel approach to assess liquidity-adjusted Value-at-Risk (LVaR) optimization of multi-asset portfolios based on vine copulas and LVaR models. This framework is applied to stock markets of the G-7 countries, gold, commodities and Bitcoin. The results show that our approach is superior to the classical mean–variance Markowitz portfolio technique in terms of the optimal portfolio selection under a number of realistic operational and budget constraints. We find that both Bitcoin and gold improves the risk-return performance of the G-7 stock portfolio. However, Bitcoin (gold) performs better under a scenario of only long-positions (when short-selling is allowed).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.