Abstract

Colloidal clay nanosheets obtained by the delamination of layered crystals of smectite-type clay minerals in water form liquid crystals because of their shape anisotropy. Loading of organic dyes onto the liquid crystalline clay nanosheets will enable novel photonic materials, where photofunctions of the loaded dye are controlled by the liquid crystallinity of the clay nanosheets. However, adsorption of organic dyes onto the nanosheets renders the nanosheet surfaces hydrophobic, and consequently, colloidal stability of the nanosheets is lost. In this study, this drawback is overcome by sandwiching cationic stilbazolium dyes between a pair of synthetic fluorohectorite nanosheets. This is realized by the preparation of stilbazolium-clay second-stage intercalation compounds characterized by intercalation of dye cations into every other interlayer space of the hectorite clay, where nonintercalated interlayer spaces are occupied by Na+ ions. The second-stage intercalation compounds are obtained by partial ion exchange of mother clay mineral incorporating Na+ ions in all of the interlayer spaces and delaminated from the Na+-containing interlayer spaces to form clay nanosheets sandwiching the dye molecules. Aqueous colloids of the dye-sandwiching clay nanosheets form colloidal liquid crystals, and the dye-sandwiching liquid crystalline clay nanosheets respond to an applied AC electric field to be aligned parallel to the electric field. The assembled structure of the dye-sandwiching clay nanosheets under the electric field is characterized by aligned discrete clay platelets, which is somewhat different from that of a colloidal liquid crystal of clay nanosheets without dye loading characterized by macroscopic liquid crystalline domains up to submillimeters. The electric alignment of the clay nanosheets induces alteration of light absorption of the sandwiched stilbazolium molecules, which verifies a strategy of constructing stimuli-responsive photonic materials of clay-organic hybrids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.