Abstract

Water management in the flow field as well as the flooding process in the gas diffusion and catalyst layers enormously influence proton exchange membrane fuel cells (PEMFCs) performance and reliability. Researchers have developed many different designs for flow channels that can be used to distribute fuel or oxidant in PEMFCs (proton exchange membrane fuel cells). Among these designs, novel biomimetic designs have captured special attentions from researchers due to their capability of distributing fluids effectively. This study presents an investigation of the liquid water transport within a porous layer and a symmetrical biomimetic flow field based on Murray's law. The volume of fluid (VOF) method is employed, and the dynamic contact angle (DCA) effects are also considered for better prediction of water distribution. The water transport process and water distribution inside the porous layer and flow field are obtained from the simulation results. Recommendations are given for this type of flow field design based on the behaviors of liquid water in the porous layer and flow field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.