Abstract
We tackle the human motion imitation, appearance transfer, and novel view synthesis within a unified framework, which means that the model once being trained can be used to handle all these tasks. The existing task-specific methods mainly use 2D keypoints (pose) to estimate the human body structure. However, they only expresses the position information with no abilities to characterize the personalized shape of the individual person and model the limbs rotations. In this paper, we propose to use a 3D body mesh recovery module to disentangle the pose and shape, which can not only model the joint location and rotation but also characterize the personalized body shape. To preserve the source information, such as texture, style, color, and face identity, we propose a Liquid Warping GAN with Liquid Warping Block (LWB) that propagates the source information in both image and feature spaces, and synthesizes an image with respect to the reference. Specifically, the source features are extracted by a denoising convolutional auto-encoder for characterizing the source identity well. Furthermore, our proposed method is able to support a more flexible warping from multiple sources. In addition, we build a new dataset, namely Impersonator (iPER) dataset, for the evaluation of human motion imitation, appearance transfer, and novel view synthesis. Extensive experiments demonstrate the effectiveness of our method in several aspects, such as robustness in occlusion case and preserving face identity, shape consistency and clothes details. All codes and datasets are available on https://svip-lab.github.io/project/impersonator.html
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.