Abstract
An experimental study was carried out to investigate the liquid distribution and transport in vertical gas–liquid flows in a 42m long, 0.048m ID tube system. Liquid loading in gas wells is generally defined as the inability of the produced gas to lift the co-produced liquid up the tubing, resulting in liquid accumulation in the wellbore. The characterization of the liquid loading phenomenon is often based on field monitoring, with limited measurements of pressure and liquid holdup profiles, and usually without visual observations of the phenomenon.The experimental observations obtained in this work show the liquid re-distribution during changes in gas flow rate. These observations revealed that, after a change in gas rate, the liquid film starts to flow downwards in the pipe, and subsequently, the liquid begins to steadily flow upward at a constant velocity. The experimental data were compared with a numerical model, showing an agreement of ±25%. A pseudo-steady state approach was used to model the vertical gas–liquid flows in this long pipe to describe liquid loading in vertical wellbores. The liquid droplets entrained in the gas core were observed and estimated to be flowing upwards in order to obtain a good agreement between experimental observations and model results, even though the gas velocities were lower than Turner critical velocities. The widely accepted droplet model of Turner says that below the critical velocity, the liquid droplets should be flowing downward and not upwards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.