Abstract

A novel L-FDM technique that builds upon the fundamentals of the FDM additive manufacturing process has been developed. It includes a mechanism that directly incorporates a chemical substance and alters polymer fibers throughout the fine process. This method eliminates the need for additional extrusion operations and compounding equipment to introduce chemical additives and solvents. This advancement opens up new opportunities for printers to be used in chemical labs to test new or known chemical substances. The paper outlines the technological assumptions, potential applications, and practical examples of direct filament modification using the L-FDM technique. The modifications made to the mechanical properties of the printed objects were confirmed through thermal analysis techniques (DSC), water contact angle measurements, electron microscopy (SEM-EDS), and mechanical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.