Abstract

The knowledge of the thermophysical properties of liquid metals and alloys is essential for expanding the materials database and designing materials with good properties. In this work, we developed an interatomic potential using a deep neural network (DNN) algorithm for liquid Ag-Si alloys. Compared with ab initio molecular dynamics (AIMD) results, the DNN potential provided a good description of the information of energy, force, and structure features of the system in the simulated temperature range. Through this potential, we can obtain the thermophysical properties of different compositions of liquid alloys by simulation way. The computed thermophysical properties are in excellent agreement with the reported experimental data. The analysis of local structure indicates that the liquid ordering and stability strengthen upon cooling at the atomic level, eventually leading to an increase in thermophysical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.