Abstract

The slow solid diffusion dynamics of sodium ions and the side-reaction of sodium metal plating at low potential in the hard carbon anode of sodium ion batteries (SIBs) pose significant challenges to the safety manipulation of high-rate batteries. Herein, a simple yet powerful fabricating method is reported on for "egg puff"-like hard carbon with few N doping using rosin as a precursor via liquid salt template-assisted and potassium hydroxide dual activation. The as-synthesized hard carbon delivers promising electrochemical properties in the ether-based electrolyte especially at high rates, based on the absorption mechanism of fast charge transfer. The optimized hard carbon exhibits a high specific capacity of 367mAhg-1 at 0.05Ag-1 and 92.9% initial coulombic efficiency (ICE), 183mAhg-1 at 10Ag-1 , and ultra-long cycle stability of reversible discharge capacity of 151mAhg-1 after 12,000 cycles at 5Ag-1 with the average coulombic efficiency of ≈99% and the decay of 0.0026% per cycle. These studies will undoubtedly provide an effective and practical strategy for advanced hard carbon anode of SIBs based on adsorption mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.