Abstract

The dependence of the radially convergent shock wave formation in a cavitation bubble on the surrounding liquid temperature TL in the range from 273.15 to 400 K is investigated at the liquid pressure equal to 50 bar. Realistic mathematical model is applied, in which the effects of the liquid compressibility, the heat conductivity of the vapor and liquid, the evaporation and condensation on the bubble surface are taken into account, wide-range equations of state are utilized. The governing equations of the vapor and liquid dynamics are solved numerically using a modification of the Godunov method of the second order of accuracy. It has been found that a radially convergent shock wave arises in the bubble in 273.15≤T_L≤375 К. In this interval, the distance between the shock wave formation position and the bubble surface decreases with decreasing the liquid temperature. The possibility of using a known simplified criterion of the formation of a shock wave inside a bubble to estimate its formation position under the studied conditions is considered. It is shown that with applying that criterion the shock wave formation position turns out to be correctly predicted at T_L≈325 К, while at T_L>325 К and T_L<325 К it is predicted closer to and more distant from the bubble surface, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.